Calculation of Heights, determined by Barometrical Medisuriment. 85

If, on the contrary, we prepare this colt's foot with due allowance for' the stperior rapidity of growth of horn at the toe; if we puit it in such a shape as will bring the foot to the natural position by the end of the second week; we shall have had, for the first and segpond week an irregularity on one side gradually correcting itself; we shall then have a perfect position of the foot; and during the third and fourth weeks, we shall have an irregularty on the dangerous side, dnly so great however as what would have taken place, at so early a period as the end of the second week, under the other aystem of management. If the existence of thatdue proportion between the masses of horn, in the different parts of the hoof, for which I contend, is destroyed by the existence of too small a quantity in the forepart of the foot, during the first fortnight, the evil consequences to be dreaded therefrom will be counteracted during the fortnight ensuing, and an equilibrium will thus in a manner be maintained.

But as every forced change, in the position of the foot, from that for which nature adapted the various joints and tendons, must the an evil dangerous in proportion to its extent ; it' will appear, that the greater the frequency with which the foot is brought into its natural position, and the oftener the equilibrium of the masses of horn is restored, the fewer will be the chances of injury, either to the joints, or the form of the hoof. In place then, of a change of shoes every month, as, assumed above for illustration's sake, let us suppose them to be shifted every fortnight'; and the hoof being trimmed each time, with reference to the change of form, from the unequal growth of horn, which the hoof must undergo during the interval, always aiming at having the foot in its proper shape and poxition during the middle of the term ; and we make as near an approach to what appears, in theory at least, perfection in shoeing, as can be obtained; because by so doing we keep the relations of the different parts of the hoof more nearly in their natural state, and the extremity of the limb more nearly in its natural position, than we can do by any other mode of treatment.

The above are crude thoughts and conclusions, grounded upon what appear to be true and obvious principles. They are offered, not as the result of well conducted experiments, made with reference to the determination of the truth of the views submitted; but because the necessity for keeping the masses of horn in some sort of equilibrium does not appear to have occurred to any of those writers who have treated the subject scientifically, as being a desideratum in the treatment of the horse's hoof, and because it is still unfortunately found, that the majority of hoofs, after being in the hands of the farrier, do lose their natural shape, however smoothly they may be pared out and trimmed, with whatever skill the semblance of natural bars along the sole may be created by the dexterous use of the drawing knife, and with whatever art the heels may be made to assume the appearance of that width, which pature intended they should in reality possess.

III.-Onthe Calculation of Heights, determined by Barometrical Mea-

To the Editor of Gleanings in Science.

Sir,
The method of measuring the heights of mountains by the barometer is well known. The formula generally employed when a book of ogarithms is at hand is sufficiently short, and (to those acquainted with the principles on which it is founded) simple. Nevertheless I have found that to some it appears perplexing ; add to which, a table of logarithms may not be immediately procurable in many cases. At all event! I have thought that a simple method of deducing the results of barometric measarements, "which, bésides being' independent of logatithins, should be entirehy free fiom immiguity, might prove acceptable to some' of jouk readern. If you are of this opimion, you will oblige me by giving insertion to thin communication'in one of your early numbers.

Given the height of the cohumn of mercury at twa atations, with the temperature both of the air and of mercury; the former being shown by the detached, the latter by the attached thermometer. Required the difference of level of the two stations.

- It is Girst necossary, if the columns of mercury be not of the same temperature, to reduce them to it. This is done by adding to the colder, or subtracting from the warmer rotso of its length, for every degree of difference between the aftached thermometers".

The columns being reduced to the same temperature, the calculation of the dif ference of level is sufficiently easy, by attending to the following practical rule.
lst-T.Take balf the difference of the columna, and remove the decimal point five places to the right, adding as mazy ciphare as may be necessary. Divide by the sum of the columns t, the quotient is the approximate difference of level in English feet.

2 dly .-Divide the sum of the columns by the difference, rejecting 100 ths and 1000 ths of inches. With the quotient, divide continually the approximate height found as above, reserving the alternate quotients, i. e. the 2d. 4th. 6th, \&c. Then these quotients divided by the odd numbers 3. 5. 7. \&c. give the 1st. 2d. 3d. \&c. corrections which are in every case additive to the approximate height.

3dly.-Correct the result thus found for the temperature of the air in the fol ing manner. From the sum of the detached thermometers, subtract $16^{\circ} .3$, multiply the approximate height by this remainder, and divide by $1000 \ddagger$. The quotient increased by $\frac{1}{10}$ of itself is the correction for the temperature of the air: it is additive. If we wish to be scrupulously accurate, we may subtract from this coro fection $\frac{3.5}{1050}$ of itself,

Remaris.

This rule will give the difference of level with the same degree of precision as the logarithmic calculation, by attending to the corrections mentioned in the second part of it. In barometrical measurement, however, it would seem to be expecting more accuracy than the method is capable of, in the present state of our information, to be solicitous about such small differences as 10 or 12 feet. This being the case, the 2 d part of the rule may be safely disregarded, in the calculation of heights that do not exceed 4 or 5000 feet; by which, the operation is reduced to a division by three places of figures. Even in differences of level amounting to 10000 feet, one correction will be found sufficient for every practical purpose

As to the 3 d part of the rule it is not peculiar to this method, being equally necessary when that by logarithms is resorted to. So that, upon the whole, to those not well versed in the use of those numbers, this method may be preferable. Certainly, for small elevations, it seems both shorter and easier.

Perhaps I should not omit to mention, that I have taken the rate of expansion for air as ato of its volume at 32° for each degree of Fahrenheit's thermometer. This is the determination of MM. Dulong and Petit, and, it is said, of Mr. Dalton and of M. Gay-Lussac. Puissant's formula is vitiated by his using a co-efficient, equal to 450 when retuoed to Fahrenheit's sicale.

I shall now take, as an example, the difference of level of the "Pic du Midi" above Tarbes, as measured trigonometrically by M. Ramond and barometrically by MM. Ramond and Dangon, the particulams of which may be seen in Puissant's Goodesie.

- This oparation is easily perfarmed by prefixing two oiphers and the decimal point to the height of the bqrometer, to be coprected, and multiplying by the difference of the zhermomaters. .The product is the correction subtractive if the harometer be the warmer.
+ When great accuracy is not required, it will tend to the materially shortening this division to reject 1000 ths and 100 ths of inches from the division. The error in heights of 10,000 fpet can hardly exceed 10 feet.
\ddagger This is done by merely removing the decimal point, three places to the left.
 is of no consequence in what linear measure they are given, provided they be bech given in the same. The rule requires, totnever, thas the tomperatures choribl be expressed in Fahrenheit's scale, and recordingly the indiceations of the centignedo thirmometer, as given by Puissant, have been reducod to that scalo as abovisi

1. To redace the mercurial columns to the same temperturts we have,

$$
\text { ,735 } \times 16,{ }^{\circ} 1
$$

10,000
And ,78508 - , 00118 $=, 7344$ the eorrected length of the mereurial charata The correction is subtracted bechase the barcmeter, 78858 wis the warmer.

The two barometars being, 7944
,5378
Their sain is 1,9716
Their diferemee , $10 y^{2}$
Hate thoir diff. $=0680$ and remoring decimal point
5 places to the right it will be

- 9800
-. Dividing by the stam 1,9716 we get 7754 foet, the approximate beight or difference of level.

2. For the cortections.

Divide 1,2716 the sum by, 1972 the difference, the quotient is 6,45.
Now divide the approximate height 7754 continually by 6,45 the quotibntes are, 1047 1st.
163 2d.
253 d.
4 4th.
Now divide the 2d. 4th. 6th. Ac. quotionts by 8.5.7. \&s. for the 1st. 2d. and 2d. \&e. eorreetions.

$$
\text { 3) } 16 s \operatorname{cha}^{\text {a }} \text { quotiene }
$$

64,3. 1st. correction.
5)4, 4th quotient
,82d. cortection.
These corrections are always addilite.
Approsimate height 7754

$$
\text { 1st. Correction } 64.3
$$

2d. Ditto 8
Corrected height 7009.1
3. Correction for the temperature of the air.

From the sum of the detached thermometers, \qquad 105.6

Deduct,
Remains 89.3

Now the corrected height 7809, multiplied by $89^{\circ} .3$, and divided by 1000 gives 697,2 , adding to this, $69,72=$ It it becomes $766,9=$ the correction for the temperature of the air. Applying thin correction to the approximate height 7809, the sum is $85 \% 5.9$ the true difference of level by barometrical measurement. By geometrical methods it was found to be 8573,3,

IV.- Remarks on Elasticity.

When we say that a body is elastic, we simply mean, that on compressing it, if the pressure be removed, the body regains its original volume.

